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Effect of Torsion in Dirac Equation for Coulomb
Potential in Robertson—Walker Space-Time
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The Dirac equation with Coulomb-like potential and self-interaction term, that originates
fromtorsion, is studied in the Robertson—Walker space—time. Itis shown that the angular
dependence of the equation can be separated also in presence of nonlinear terms. Under
reasonable physical assumptions, the time dependence is also separated. An extended
perturbative calculation can then be applied qualitatively. The conclusion is that the
perturbation of the energy levels of the system, as consequence of the self-interacting
term, is not relevant on physical grounds.
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1. INTRODUCTION

The consideration of wave equations in curved space—time with torsion has
always been attracting for different reasons. It allows a full description of the inter-
action of the particle and the gravitational field and gives new degrees of freedom
to further describe physical interactions (Finkelstein, 1960rs@y, 1957; Hehl
etal, 1976; Hehl and Datta, 1971, and references therein). The interest has been fi-
nally raised in connection with the study of neutrino oscillations (Alimohammadi
and Shariati, 1999; Zhang, 2000) and in general in the extensions of the Stan-
dard Model to curved space—time (Dobado and Maroto, 1996) and string theory
(Hammond, 2000).

For what concerns the spin 1/2 wave equation in curved space—time with
torsion, it can be obtained by the action principle by using as total action the sum of
the Einstein—Hilbert—Cartan action with the Dirac action. One canonically obtains
a Dirac-like equation containing nonlinear terms that are originated by the torsion
(see e.g., Hehl and Datta, 1971). Recently (Zecca, 2002), the Dirac-like equation
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has been reconsidered and translated into the language of the two spinor formalism
of Newman and Penrose (1962). The result leads to interpret the nonlinear terms
of the equation as originated by the interaction of the particle with its own current.
Besides the problem of solving the equation, it remains then to establish whether
the modifications introduced by the torsion in the Dirac equation are in some way
physically relevant.

The object of this paper is to test the effect of torsion on the spectrum of
the Coulomb-like spinor potential. The study is performed in the Robertson—
walker metric both because this metric is the base of the standard cosmology
and because a similar study has been already performed in absence of torsion
(e.g., Zecca, 1999). To evaluate the mentioned effect, the Dirac equation with
Coulomb-like potential and nonlinear terms is preliminary separated in its angu-
lar dependence. This possibility strictly depends on the analitycal structure of the
nonlinear terms and has the advantage of giving an angular dependence similar to
that of the torsion free case. Under the approximation of a constant cosmological
background one is then left with a pair of coupled radial equations containing
nonlinear terms. By a standard manipulations of these equation, and to the first
order in the nonlinear terms, it is possible to put the problem into the form of
an eigenvalue-like problem. By perturbative evaluation, a qualitative effect of the
torsion on the descrete spectrum of the Hydrogen-like atom is then performed.
The resultis such that, under the approximations done, the shifts of the energy lev-
els due to the torsion effect is physically unappreciable in the Robertson—Walker
space—time.

2. DIRAC EQUATION WITH POTENTIAL AND TORSION

The Dirac equation in spinor form in curved space—time (Chandrasekhar,
1983; Penrose and Rindler, 1984) can be formulated by including also a spinor
potential (e.g., llige, 1993; Zecca, 1999). In case of space—time with torsion,
the equation is further modified by the introduction of nonlinear terms, given
by the interaction of the particle with its own current, as it follows by canon-
ically applying the action principle to a well-known Lagrangian (Zecca,
2002). By combining the results of the schemes of the mentioned papers,
the Dirac equation relative to a particle of mass = u,+/2, subjected to a
spinor PotentialVax and with self-interaction induced by torsion, can be
written as

(Vax +iVax +ibJIax)PA +in.Qa =0
_ _ 1)
(Vaa —iVan —i0JIan)Q” +in,Pa =0
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(b real,b ~ 1) whereVay is the usual covariant spinor derivative add” =
PAPA + QAQA is the spinorial current associated to the particle. The Eq. (1)
can be made explicit in terms of the directional derivatives and spin coefficients.
One gets

(D+e—p+iVoo)PL— (8" + 7 — o +iV1o)Po + i (tta + bQaAPA)Qp = 0

(B+B—1+iVo)Pr— (A +pu—y+iVi)Po+i(u. +bQaPAQ =0

(D+e—p—iVo)Q1— (8" +7 — & —iV1g)Qo +i (1. + bQaPA)Po = 0

(G+B—T—i1Vo)Qi—(A+ i~y —iV11)Qo+i(u. +bQaP*)Py = 0.
@)

This is the general form of the Dirac equation with potential in space—time with
self-interacting terms generated by torsion. Further formal developments can be
obtained only by specializing the scheme. From a physical point of view it is
interesting to test the effect of the torsion interacting terms (that have a gravi-
tational origin) on the properties of some known physical system. The object of
the following sections is to test this effect on the Hydrogen-like energy spec-
trum for a Dirac equation considered in the context of the Robertson—Walker
space-time.

3. SEPARATION OF THE ANGULAR DEPENDENCE IN THE
ROBERTSON-WALKER SPACE-TIME WITH TORSION

The study is hereafter confined in the space—time of metric

dr?
1—ar?

ds® = dt? — RA(t) [ +r2(d6? + sirf 9 dwz)} a=0,+1. (3

By using a null tetrad frame previously introduced, all the spin coefficients in-
volved in (2) are real, such that= —8,¢ = —y, T = 7 = 0, and do not depend
on ¢ (Zecca, 1995, 1996). Therefore thedependence factors out in the form
expime), m= 0,41, £2, ... By further setting

1
PA = = (Ha(r, 1) expiSi(6), Halr, 1) expiS,(0)) expime)

Q¥ = L (~HE,1) eXpISIO), Holr, 1) expiSi(6) expi-img) (&)

Vo1 = Vio=0, Voo = Vool(r), Vi1 = V(1)
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(S, S real functions) and by proceeding as in Zecca (1999), the Eq. (2) can be
developed and put into the form

ﬁrRDH1+(€~I—IVoo)H1_i|: *_bH1H2+ H1H2:|«/§rR

H, (rR)2
_ _L* expiS, —,
expi S,
\/ErRAHz—G-(eH—:lVM)Hg » [ ) _leH(zqu:)lz-ile} SR
__Lrexpis,
expi S, 5)
\/ErRDH1+(€H2-iV11)H1 i [ *_b|‘_|1H(2r-iF;)2H1|‘_|2:| JIR (
_ LT expiS; _
expi S,
ﬁrRAHZJF(eHJIiVOO)Hz . [ ) _bﬁlH(erF;)?lﬁz} VAR
_ L™ expiS Y
expi S

wherex is the separation constant and it has also beeh&et 9, = m/sirg +
(cotf)/2. (One can check that, fdr = 0, the Egs. (5) are, modulo the angular
part, those found in Zecca (1999)). The angular functions then satisfy the equations
LT expiS; = —Ar expiS, L™ expiS, = A expiS; and alsoL~ Lt expi S, =
—22expiS;, LTL™ expiS, = —12 expiS,. These last equations, that are satis-
fied also by the real and imaginary part of €8p, expi S,, can be found solved in
Montaldi and Zecca (1994). The regular solutions are of the form

[mi

(L cosd) F+i(1+cost)5-iP@M), 22=(+23)° 1=ml,m+1,...
(6)
(sing)2u (), 22=(+13)7% 1=01,2,..

for [m| > 1 andm = 0, respectively, wher® andU are real polynomials in cas
The expressions in (6) are bounded fox® < = and therefore, by eventually
multiplying by a constant factor, the solutions &scosS,, sinS;, and sin$; are
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well known. One is then left with the equations in thandt variables
Hq |‘_|2 + Hy |‘T1> A :|
H;

DH; + (¢ +iVoo)H1 = |:i <M* -b

(rR)? IRV2
H;H, + HoH- A ")
. . +
I =

where the explicit expressions of the directional derivatives and of the spin coef-
ficients are (e.g., Zecca, 1999)

V2D = 4 + (V1-ar?/R)
V2A =8 — (V1 -ar2/R) (8)

e =2%?R/R.

It is worth noticing that it has been possible to separate the angular dependence
as a consequence of the particular structure of the nonlinear terms. The further
separation of the, t variables, that can be performed in the absence of potential
andtorsion (Zecca, 1996), is here quite difficult to be obtained. Owing to the special
R dependence, the self-interaction terms can be considered small with respect to
the other terms. In the following they will be treated as a small perturbation.

4. PERTURBATION OF THE HYDROGEN ENERGY SPECTRUM
INDUCED BY TORSION

The object is now to evaluate the order of the perturbation of the energy
levels of a hydrogen-like potential owing to the presence of the self-interacting
terms. To that end, since in correspondence to the energy levels the solutions are
expected to be localized into atomic dimensions and the time intervalls involved
are negligible on cosmological scale, it is possible to study the equation (7) under

the approximations
ar’ « 1
9)
R(t) = constant= R

and R sufficiently large. It is also convenient to choose instead tf the inde-
pendent variables

SZ/;L, r =t/R. (10)

1—ar?

In this way the directional derivatives becom® = (9, + ds)/Rv/2, A =
(3, — 3s)/Rv/2. The Coulomb-like potential will be represented by the
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expression

1 1y
Voo=Vii=V=——-=. 11
=Vi=V =] (12)
From the positions (10), (11), by settingg= H; + H,,rf = Hy — Hy, by adding
and subtracting the Egs. in (7), one obtains

-, . b(gg — f f)
fs+gt+rsr f+|x/§Rg[V—u*+%}=0
_ (12)
rs+ A ) b(gg— ff
n+%+-i_g+nﬁRﬂV+uf—i%ﬁrl}=Q

By the assumptions (9¥s ~ 1 and ther dependence factors out in the form
exp(kot) so that the system (12) becomes

, 11— | x bv2, _ —
f+Tf+lg|:r—mo+ko+ﬁ(gg—ff):|_0
(13)
P R I bv2, _ . = .
Q+Tg+|f[F+mo+ko—ﬁ(gg—ff) =0
where’ = d/ds, my = v/2Ru, = Rmy, ko, = kR and f, g depend now only on

the variables. The object is now to treat the nonlinear terms as a perturbation. We
set (Darwin, 1928; Gordon, 1928; Zecca, 1999)

f = Cexplp/2)p” (o + %)

g = Dexp(—p/2)p” (oL — 0)
(14)

p = 20r, §=RymZ—k® (r=r(s))
C/D = [(k — me)/(k + me)] 2.

By using again the approximatiafil — ar2 = 1, the Egs. (13) become, after some
calculations, in terms of the functions, 0.

P01 + 0a[y + KA+ meB] — g2[A + meA+kB] =0
(15)
p% + G[—p + ¥ —KA—mMeB] + qi[—A + MeA+kB] =0

where now = d/dp. Moreover in Eq. (15) it has been used the definition

_ X g _ bvV2 (@3- 1)

- /m—ke 4 (m2—k?)R2

(16)
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where f, g are understood to be the functionsf g, as expressed by (14). By
further setting

y=Vi2—x? (17)

and neglecting terms of the ordB?, BB’ one arrives at

" I pkB/
142y —p— ———
pq1+q1[ +2y —p A+meA}
mer — Ky + A(mZ — k?)
— kA+m.B - B’ =0
Q1|:)/+ + Me oA

(18)

okB’
" / 1 2 _
pqz+qz[+ Y p+7k_meA}

me/\—ky+kp+A(m§—k2):| _o

— g1 KA+meB + B’
Q2|: +y +kA+meB + pa—

The Eqg. (18) can be put into the form of an eigenvalue problem Qith (gg):

(Ho+ H1+H2)Q = (KA+y)Q

2

o (p%+(1+2y—p)% 0 )

0= )

0 Pz +(L+2y —p)g —1
(19)
mB O
Hy =
0 meB
kB d meA—ky + A(MZ—k?)

Ho = _AimeAﬁ + B Ay+meA 0

2= 0 KB d _ g Meh—ky—AmE—k?)tko

A—meA dp A—meA

The zero order eigenvalue proble & 0) has been solved in Zecca (1999) and
gives

xKn
Ak, + v =2y +ny, nr=:|.,2,3,...<)/—7=—nr (20)
ym2 —k32

with corresponding energy levels

, ~1/2
LI X . (21)
Me (nr 4+ /A2 = XZ)
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that coincide with the energy levels of the hydrogen atom in flat space-time
(Berestetsket al,, 1972; Bethe and Salpeter, 1957).

In presence of nonzerB, the termsHi, H, can be treated as small per-
turbations. The correctioq of the energy levels (20) induced By,, H, could
then be calculated at a first approximation, by first order perturbation theory, that
is by calculating expressions lik&n|H1 + H2|Qn). The Q, are the zero-order
eigenfunctions an@{1, H, are understood to be themselves expressed in (19) by
the zero-order eigenfunctions by using the definitions (16) and (14) [Similar point
of view was adopted in Cavalleri and Zecca (1991) for perturbative calculation
relative to a nonlinear Scadinger equation].

The corrections;, to the energy levels satisfy the equation

k m2
o n oyttt (22)

Jmg—1e (mg —k3)”*
where also Eq. (21) has been used. Therefore
3/2
(Mg — k)™ kax®
xm3 mz

2y +nm+¢=y+

ki, ~ ¢

n

(23)

and¢ can be obtained as mentioned. Since we are interested only in the order of
the magnitude of the perturbation and since the dominant term in the perturbation
is ~meB, one has

Me Me
~ ~ . 24
Rk KR (24)
Therefore the relative perturbation of the levels is
k! k 1
D~ (25)

kn m2RZ  meR?’

By passing from Plank units to ordinary units one kiagk, ~ 13¢?/(GmeR?) ~
10-%3/R2. To havek/,/ ks at least of the order of the relative Lamb shift, that is of
the ordern® = (1/137), it must beR < 1078,

5. CONCLUDING REMARKS

The results of the previous perturbative calculations are valid under the sec-
ond condition (9) and are therefore exactdoe 0 andR constant and arbitrary.
In general, as pointed out by Parker (1980), there is a shift of the energy levels,
because of gravitational field, proportional to a curvature-like pararietercase
of Robertson—Walker space—time models the parameter is of theDornil/R.
Accordingly for I/R < 10~* cm™! the spectrum (21) is right in the sense that its
modification due to the gravitational field is of an order of magnitude less then the
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Lamb shift of the Hydrogen atom (Parker, 1980). Therefore, under the condition
R > 10 the spectrum (21) can be correctly considered as the zero-order spectrum
of the previous calculations. The conclusion of the previous section is then that the
effect of the self-interaction term to the energy levels is so small to be practically
unobservable.

If one now considers values & for which the gravitational effect on the
energy levels is at least of the order of the Lamb shift, Ray 10, the previous
perturbative calculation could be repeated in principle, if one is able to find an
analytic expression for the energy levels.

What seems to be more problematic, in this case, is however the validity of the
second condition in (9). By relaxing this condition, the separationtofariables,
that is possible in absence of self-interacting terms and potential (Zecca, 1996),
becomes very difficult. Also the applicableness of the perturbative method would
be quite questionable in this case. A complete solution in this sense would be, of
course, very satisfactory. The guess is, however, that if the previous calculations
are developed in the context of the standard cosmological model (e.g., Kolb and
Turner, 1990), then to have physically measurable modification of the energy
spectrum, one has to go into epochs where the existence of the Hydrogen atom
itself is questionable.
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